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Dynamics in a two-dimensional core-softened fluid
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The dynamical properties of a model one-component core-softened fluid with purely repulsive interactions
are found to be very complex. At low temperature the fluid structure exhibits cluster motifs including dimers,
stripes, and polygons, depending on density. Single-particle diffusion and the velocity, shear-stress, and wave-
vector-dependent current correlation functions have all been calculated using molecular dynamics simulations.
The results highlight the presence of well-resolved single-particle and collective motions, which is remarkable
for what is essentially a “simple” one-component fluid.
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I. INTRODUCTION has been observed in a two-dimensional model consisting of

The intermolecular potential in a core-softened fluid hatl(_ihdiskbs_ Wi_th a ;eﬁulsive “step” E(_)tent[alz]. he d .
(CSBH consists of a hard repulsive core and a “soft” repulsive e objective of the current work is to survey the dynami-
shoulder, and sometimes an attractive tail. CSFs have r&2! Properties of the CSF at a level of detail comparable to

ceived considerable attention as models with which to undert-hgt lob.tari1ned| in si;nulatiinhstugies o_f S"T‘p'g‘ l;atomic" qu_ids
stand the origins of unusual phenomena—such as negati &2 §; the plan of attack has been inspired by recent simu-

thermal expansion and liquid-liquid critical points—in ation studies of dynamics in complex fluids and glasses,

network-forming systems such as wafdr], liquid phos- suclh asl arr(;orpho_us '\s/li{i)c(ae_e, el.g._, Re[hl?])' 'It;o this en((jj,
phorus[2], and liquid carbor3]. These materials are char- m? ecl:u ar y’?am'“é ) s_|m|u ?tmns ave Iegh USE tlo
acterized by the ability of the constituent particles to formcalculate various dynamical features, including - single-
two (or more types of “bond” with nearest neighbors; the part|ple Q|ﬁu3|on, relaxation of shear-stress cqrrelatloqs, and
CSF mimics this effect through pairs of particles either peniongitudinal and transverse current correlations. It is ob-
etrating, or being repulsed by, the shoulder of the potentialserved that at moderate densities the structures evident in
To date the study of model CSFs has been restricted to statjc9: 1 give rise o motions with two distinct time scalgs:
structural and thermodynamic propertjds-14). |gh—frequen9y_ motions corresponding to smgle—pamcle
In recent work the structure and phase behavior of afnovement within clusters and low-frequency motions corre-
interesting model two-dimensional CSF were studied usin pondln_g to fluctu_atlons n the cluster network._ The main
Monte Carlo(MC) computer simulation§13]. The model onclusion from this work is that the model two-dimensional

consists of a monolayer of Lennard-Jones spheres with aﬁSF under c.onsideration not only possesses unusually rich
additional long-range repulsive interaction. The pair interacph""se behavior, and unysual structural motn_‘s,.but al.f,o plays
tion potential is host to complex dynamical phenomena. This is particularly

interesting because the model is ostensibly a “simple” one-
12 6 3 A o .
u(r) = de L I A I ¢ o 1) component fluid with purely repulsive interactions.
r r)’ This paper is organized as follows. In Sec. Il the simula-
, _ .. tion methods are summarized briefly. Simulation results are
wheree and ¢’ are energy parameters, is the sphere “di-  resented in Sec. I1l, which begins with a recap of the key
ameter,” and is the interparticle separation. A physical re- gy ctural features, and then goes on to report single-particle

alization of this model might be a monolayer of ferromag- 5nq collective dynamical properties in turn. Section IV con-
netic surface-stabilized colloidal particles on a solid des the paper.

substrate, with a strong magnetic field aligned perpendicular

to the plane. With the energy parametér (816/9)¢, u(r) is

purely repulsive and consists of a short-range repulsive core, l. MOLECULAR DYNAMICS SIMULATIONS

a shoulder of height¢/3 atr=1.35s, and a slowly decaying The dynamical properties of the CSF defined in EX.

repulsive tail; the potent!al function is plotted in Figial  \ith €' =(816/9)e were examined using molecular dynamics
Results from MC simulations show that at low reduced tem-(MD) simulations in the Gaussian isokinetic ensenfilg].

* 2 . , R
peratures” =kgT/e~ 107 (kg is Boltzmann's constanthis  The system consisted df=500 particles in a square simu-
pair potential gives rise to an astonishing range of statefyion cell of aread=L2, with periodic boundary conditions
including dimerized, striped, and meshlike fluids, and trian-;pplied. The dimensionless parameters in the system include
gular and Kagomé latticgg.3]. Some typical fluid configu-  hmper density” =No2/A, temperaturd” =kgT/e, and time
rations obtained from MC simulations are shown in Fig. 1t =tJe/mo2. The potential was truncated smoothly between
(see Sec. lll for discussignA similar diversity of structures 0.95x L/2 and L/2 using the switching function of Ref.

[19]. The equations of motion were integrated ove? tihe
steps of lengthét"=0.005 using the fourth-order Gear
*Email address: philip.camp@ed.ac.uk predictor-corrector algorithnj18]. Time correlation func-
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FIG. 2. Structure factor(q), in the CSF aff* =0.01 and den-
sities (from top to bottom p*=0.15, 0.25, 0.35, and 0.45. The
curves are displaced by two units along the ordinate for clarity.

13, but the images in Fig. 1 will be sufficient for interpreting
what follows.

To identify the characteristic structural length scales
present in the CSF, consider the static structure factor,

©

Sla)=1+ 27Tpf rh(r)Jo(qrydr, (2)
0

whereh(r) is the total correlation functiofiLl6] andJy(qr) is
a Bessel function of the first kind. Results from simulations
at densities in the range 0.&%" < 0.45 are shown in Fig. 2.
At low density (p"=0.19 S(q) exhibits peaks atjo=2.6n,
withn=1,2,3,..., and isimilar in form to that for a simple
tions in the time interval &t <100 were measured and aftomic ﬂUid.With particle diameterﬁa/2.622.4<_r [16] (this
o —_distance being roughly equal to the average distance between
averaged over 50 blocks, each consisting of 20,000 time . . .
steps. nearest ne|ghbq)§Throughout the density range 02%
<0.45 §(q) exhibits peaks ajo=2.6 andqo=5.5. The
features ajo= 2.6 still correspond to real-space separations
Ill. RESULTS in the region of Zr/q=2.4o, but these are now identified
with the distances of closest approach between particles be-
Bnging to different clusters. The peak gqo-=5.5 corre-
sponds to nearest-neighbor particles belonging to the same
cluster, with a typical separation ofi2q=1.1c.

FIG. 1. (a) Pair interaction potentialy(r) [Eg. ()] with €
=(8V6/9)e. (b)<(e) Snapshots from simulations of the CSFTat
=0.01 and various densitiegb) p"=0.15, (c) p'=0.25, (d) p
=0.35, and(e) p"=0.45. Spheres are shown with diameter. 1

Results are reported for the CSF at reduced densities i
the range 0.05p" <0.45 along a single isotherm with re-
duced temperaturd” =0.01, for which there is only one
manifold of stable solid phases at high densiti¢s= 0.5
[13]. Before proceeding with an account of the dynamical
properties of the CSF, the relevant structural characteristics A. Single-particle diffusion
will be summarized. Figure 1 shows simulation snapshots of
the CSF at densities =0.15, 0.25, 0.35, and 0.45. The pro- It is well known that in simple low-density two-
gression of structures from “normal,” to striped-liquid, and dimensional fluids, the velocity autocorrelation function,
then to meshlike structures is remarkable. Spatial correlatiof,(t), possesses a characterigtitlong-time tail[20]. C,(t)
functions and cluster distributions are discussed fully in Refis defined by

031507-2



DYNAMICS IN A TWO-DIMENSIONAL CORE-SOFTENED.. PHYSICAL REVIEW E 71, 031507(2009

()

s

(dAR*/de) [ (e6”fm)"
(S T~.
) A\

S
'
T
1

————————

ARW /G

=
n
.

1074 -1 Iu Il Iz ]O’3 L ' 1 s 1 N 1 1
10 10 10 10 0 20 40 60 80 100 120

r* N

FIG. 3. Mean-squared displacemeAR?(t), for systems afl” FIG. 4. Time derivative of the mean-squared displacement,
=0.01 and densitiep”=0.05 (dot-dashed ling p"=0.15 (long-  dARA(t)/dt, for systems afl"=0.01 and densitiep” =0.05 (dot-
dashed ling p*=0.25(dashed ling p"=0.35 (dotted ling, andp’ dashed ling p"=0.15 (long-dashed ling p"=0.25 (dashed ling
=0.45(solid line). p"=0.35(dotted ling, andp"=0.45(solid line). The results forp”

=0.25, 0.35, and 0.45 appear to level off at long times; estimates of
1 N the corresponding asymptotic values are indicated with faint lines.
=1 This suggests that particle clustering mitigates against hydro-

where v(t) is the velocity of particlej at timet. If C,(t) dynamic e_ffecf[s{at least over t_he simulation time s_c)ale .
1 . . If the diffusion constant exists, then the Einstein relation
~1t™* at long times, then the Green-Kubo relation for the.

diffusion constantD [{C,(t), diverges, implying that this implies that

transport coefficient is ill defined. This also implies that the 1 dAR?

mean-square displacementR?(t), increases faster tharat D= 4 !m? (5
long times, violating the Einstein relation ljm. AR?(t)

=4Dt. AR?(t) is defined by For densitiep” = 0.25, the diffusion constant has been esti-

mated using Eq(5) with simulation results in the time inter-
5 1 N 5 val 60<t"<100; the values are shown in Table |. Generally,
AR() = NE Iri(® =30 ), (4)  the diffusion constant is expected to decrease with increasing
1=1 density due to increasing confinement of the particles, al-
wherer (t) is the position vector of particlgat timet. The ~ though there appears to be a local maximum in the region of
long-time tail in C,(t) is attributed to hydrodynamic back- P =0.37. The chained structuresat=0.35 likely provide a
flow effects[16], but it is wrong to assume that the long-time Strong hindrance to single-particle diffusion, but as the den-
tail exists inall two-dimensional fluids. Notable exceptions Sity iS increased these chains must break up to form a net-

include high-density soft-sphere fluids, in WhidRz(t) in- work (as illustrated in Fig. L Therefore, it is possible that

creases linearly with time over substantial time intervalsiN€ increase in particle confinement with increasing density

[21-23. Another example is the dipolar soft-sphere fluid at!S overcompensated by the disintegration of the chains, lead-

low concentrations and low temperature, where almost com-

plete particle association appears to prevent hydrodynamic TABLE I. Diffusion constant(D), shear viscosity7), and high-
backflow[24]. frequency shear moduly&..), in reduced units, for the CSF along

The mean_square d|sp|acemm82(t), |n the CSF along the ISOtheI’mT*=001 and at various denSIthf,
the isothermT =0.01 and at densities' =0.05, 0.15, 0.25,

0.35, and 0.45 is shown on a log-log plot in Fig. 3. At first  ° DVm/ eo” 7Vo?/me G.o?le
gla;nc_ei.it afptphea;i;[héﬂ?z(t) jt at I_(l_)ng time_s, V\:Lucr; ist;:hart-h 0.25 1.275) X 10°2 0.25 0.14
acteristic of the diffusive regime. To examine this further, the 2

. S . . . 0.30 1.102) X 10° 0.26 0.25
time derivative ofAR?(t) is plotted in Fig. 4. IfAR%(t) ~t at 031 g 4(02))>< 103 0.2 0.27
long times, then AR?/dt should tend toward a constant. Fig- ' ' 5 ' '
ure 4 demonstrates that this is not true for the lowest densi- 0-33 5'42)X103 0.81 0.32
ties shown—p"=0.05 andp”=0.15—whereas the results for ~ 0.35 4.51) X 10° 0.85 0.38
p =0.25 appear to level off at long times. A close inspection  0.37 5.91)x 107 0.61 0.46
of dAR?/dt for all of the densities considered indicates that 0.39 5.52)x 1072 0.65 0.50
over the simulation time scale, the diffusion constant is well .40 4.72)x 1073 0.88 0.53
defined for densities at and abope=0.25, which coincides 0.45 2.429) X 10°3 0.78 0.73

with the onset of extensive particle clusterifgge Fig. 1
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FIG. 5. Simulation results fofa) the velocity autocorrelation FIG. 6. Simulation results fofe) the shear-stress autocorrelation
functions, C,(t), and (b) the associated Fourier transforn@,(w), ~ functions,z(t), and(b) the associated Fourier transformgw), for
for the CSF along the isother =0.01. In both(a) and (b) the  the CSF along the isotherin =0.01. In both(a) and(b) the curves
curves are for systems with densities in the order, from top to bot&r€ for systems with densities in the order, from top to bottpm,
z[orn,p"zoosl 010’ 0151 020’ 025’ 030’ 035’ 040’ and 0.45. FOFOO5’ 010, 015, 020, 025, 030, 035, 040, and 0.45. FOI"ClarIty,
clarity, the lines are drawn solid and dashed alternately, and arf€ lines are drawn solid and dashed alternately, and are displaced
displaced from one another by one unit along the ordinate. from one another by one unit along the ordinate.

ing to a local maximum irD. At the highest densitiesp- arise from rapid single-particle motions within clusters,
=0.40 and 0.45—the effects of confinement are dominant. While the low-frequency band reflects some sort of coupling
To further investigate single-particle motions the velocitybetween single-particle motions and collective modes of the

autocorrelation functio,(t) in (3) has been calculated. The Cluster network. These collective cluster motidmsich are
spectrum ofC,(t) will also be of interest: different from the hydrodynamic backflows responsible for
) :

long-time tails in low-density two-dimensional fluidasre ex-
amined further in Sec. Il C.

C,(w) = f ’ C,(Hexp(— iwt)dt. (6)

C,(w) is only defined ifC,(t) is integrable, but the results in B. Shear stress

Fig. 4 show that at low densities this is not the case since The decay of shear-stress fluctuations was investigated
C,(t) must have a long-time tail. As a resul,(t) has been using the shear-stress autocorrelation function,

Fourier transformed after application of a Blackman window A

[18]. Of course, at low densities this procedure will introduce (1) = —— (I (H11,,(0)), (7)

an artificial low-frequency portion irC,(w), but it is as- keT

sumed that the gross features of the spectrum will emergg, which I1,4 is an element of the stress tensor, given by,
unscathed. The normalized functior,(t)/C,(t=0) and

: o N N N
C,(w)/C,(w=0) for systems with densities in the range 1 ipi

e e o in Fi i n=—( 3% 3 3 ), (8)
0.05<p =<0.45 are presented in Fig. 5. At low densities AS m a5 Ik

(p"<0.20 C,(t) shows damped oscillatory behavior charac-
teristic of a dense atomic liquid. Although the particle den-wherep; is the momentum of particlg r is the separation
sity in the CSF is low, the effective diameter2.40)—and  vector between particlgsandk, andf;, is the force exerted
hence the “packing fraction"—at the low temperature con-on particlej by particlek. Simulation results forp(t)/ 7(t
sidered will be large and so the oscillatory behavior is due ta=0) are shown in Fig. 6, along with the corresponding nor-
the backscattering processes familiar in dense atomic liquidsialized Fourier transformsy(w)/ 7(w=0). As for the veloc-
[16]. C,(w) shows a clear peak at a frequency which in-ity autocorrelation functions, a Blackman window was ap-
creases with increasing density, reflecting the growing influplied to 7(t) prior to Fourier transformation. At low densities
ence of backscattering. As the density is raised progressivelip” <0.15, #(t) decays almost monotonically, with just a
abovep’=0.20 several new features @,(») emerge: a nar-  slight oscillation at long timegalthough this is within the
row band appears at high frequen@y’ > 1); a broad band noise. At higher densitiegp"=0.20 #(t) exhibits a high-
appears at low frequenciéd0 1<  <1); and the “back- frequency modulation which is most pronounced it
scattering” peak disappears under the emerging low=0.25, but then reduces to a dip @t=0.45. The dominant
frequency band. With reference to Fig. 1, the density rangéeatures in the spectra are broad low-frequency shoulders,
0.25<p" <0.45 is clearly identified with the development of and high-frequency bands that are present at densities
particle clustering and so the high-frequency features likely=0.20. At T"=0.01 the onset of particle clustering occurs in
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the vicinity of p"=0.20—0.25see Ref. 13 and Fig.)land so Ju(a,1)q, + Jy(q,t)qy
the peaks in the regiom” =1—2 suggest some sort of local Ju(a,t) = q (10
vibrational motion within clusters leading to the relaxation of
shear-stress fluctuations. and
The shear viscosity and high-frequency shear modulus 3 3
were obtained from the Green-Kubo formuige [77(t)dt Ir(q,t) = — A0,y + y(q,t)qu (11)
and the relationG,,= 7(0), respectively. Simulation results q

are presented in Table I. The high-frequency shear mOdUIUI%spectively where

. . 2 . . )

is proportional to the average dlj,, and this is easy to

calculate precisely in MD simulations. The shear viscosity, N .

on the other hand, requires a precise calculationyj, J(q,t):ZVj(t)eXF{—lq'rj(t)] (12)
which can possess long-time or “molasses” tails. Therefore, =1

Table | only reports values of and G.. at densitiesp s a Fourier component of the current, aget(q,,q,) is a
=0.25. The shear viscosity jumps considerably between aye vector commensurate with the periodic boundary con-

*

=0.31 andp =0.33, presumably due to the development ofjitions. Of more immediate use are the correspondiem-
chainlike ordering which persists over a considerable port'orboral) Fourier transforms,

of the simulation cell. Over the density range 038

<0.45, » plateaus out at a roughly constant vaJugthin the * .

likely stZtﬁstical errors of- 10%gbzi/sed on the noise if(t)]. Colg, ) = f Ca(g,t)exp-iwt)dt, (13

In this density range the cluster network percolates through- -

out the entire system. The high-frequency shear modulus irzalculated after application of a windowing function to

creases monotonically with increasing density, reflecting theC (q,t) in case there are long-time tai{although in prac-

development of rigidityover short time scalg¢ss the cluster tice, no such features were detectable within the statistical

network is established. noise. The CSF at a density’=0.45 and at temperature

T"=0.01 will be considered in detail, since at this state point

the system exhibits a high degree of clustering and signifi-

cant complexity in its intermediate-length-scale structure
To elucidate the nature of collective motions in the CSF[See Fig. 18)]. The spectral function€, (q, ») andC+(q, )

longitudinal (L) and transvers€éT) modes have been exam- for this state point are shown in Fig. 7 at wave vecwos

ined through calculation of the corresponding current corre=0.19, 3.40, and 6.00. At the lowest wave vectojr

C. Current correlation functions

lation functions, =0.19 we find a single peak i€ (0.1%1, w) at finite fre-
quency arising from an acoustic mod€;(0.1%7!, w)
<J (@.03.(~ 0)> shows no finite-frequency maximum,' as might be expected
C,(qt) ={ +——+—"—=), (9)  in the long-wavelength, hydrodynamic linfit5]. At an in-
N termediate wave vectdigo=3.40 both C, (3.4007%, w) and

C+(3.4071, w) show two maxima; in the transverse function
where @=L or T. The longitudinal and transverse currentsthese peaks correspond to propagating shear waves. At the
are given by highest wave vector (qo=6.00 C, (6.000!,w) and
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C(6.000™%,w) show pronounced shoulders on the high- 49 - - - ' - -
frequency side of the main broad peak. 35
It is clear from Fig. 7 that at intermediate wave vectors
there are two well-separated bands, perhaps correspondingt 391 T
different types of motion. To analyze the relevant time scales
in more detail, it is showm posteriorithat C,(q, w) is well
described using a simple superposition of functions—one for— 2.0} 7
each band—taken from generalized hydrodynanfiese,
e.g., Chap. 6 of Refl15]). In what follows, the effects of
temperature fluctuations are ignoréce., the thermal con- 1.0 .
ductivity D1=0), and it is assumed that each channel for the

(@)

w*

relaxation of current correlations can be represented by ¢ " [# [/ &7 o T A o0
single exponential memory function. For the spectrum of the g ) ) L . L L
longitudinal current correlation function, the linear superpo- 0 ! 2 e 3 6 7
sition is of the form[Eq. (6.3.36 of Ref.[15] with D+=0]
) FIG. 8. Dispersion curvesy,.(q), atp"=0.45 andT"=0.01 for
CL(qw) = E aw®' (o) longitudinal modegcircles and transverse modégiangles. The

oy [w? - wi + b @"(07) ]2 + [ @ (w7 ]? primary and secqndary branchgs are indicated by filled and open
symbols, respectively. The solid and dashed curves are Akima
(14 splines fitted to the primary and secondary branches, respectively.

where ®'(2)=z/(1+2%) and ®"(2)=-72/(1+7%). For the

i sound, c¢; from the points at go<1.79, c
transverse correlatiof&q. (6.2.29 of Ref.[15]],

=(1.8810.02v’%. For iron particles (mass density

2 7.86 kg m®) of diameter 10 nm at a temperatufe 300 K,
Ca,0) =, akz ) this corresponds te=(600+10 m s*. At wave vectorsqo
e {wz_ (bk_} ;2>J N (bk_ ETEZ) =2 =2.62, low-frequency peaks are observeddn(q,w), the

2 positions of which are plotted as the secondary branch in

(15 TABLE II. Peak positions,,,(q), in thek=1 andk=2 contri-

3, by, @y, and 7, were treated as separate fitting parameter&utions t0C(q, ) in (14) andCy(q, w) in (19 for the CSF afl”
for each function and wave vector. It should be noted that the 0.01 and at various gens'tk"es' T(;'e pTaka are grouped mto; high-
equations forC, (q,w) and Cy(g,») given in Ref.[15] in- gf;nucincy primary” branch, and a fow-lrequency “secondary
volve combinations of?, kT, S(q), etc., in place of the i
empirical parameteray, b,, and w, given above. Factoriza-
tion of these latter parameters is complicated by the question
of how to apportiorS(g), etc. amongst the two contributions

(k=1 and 2. In any case, the purpose of introducing Egs. .

Longitudinal Transverse

Primary Secondary Primary  Secondary

(14) and (15) is merely to aid fitting the simulation results. _* Go  branch branch branch branch
The resulting fits are included in Fig. 7, along with the indi- go5 2.62 0.36

vidual _ contributions correspondlr_wg_ to tHe=1 and k=2 010 2.62 0.37

terms in Eqs(14) and(15). In the vicinities of the peaks the 262 016 0.64
quality of the fits is excellent; the major deviations occur at 0'20 2'62 0'24 5 0 7'4
very low frequenciegwhere the simulation results are less - : ' -weak :
reliable anyway due to small truncation errors in the Fourier9-25  2.62 3.1 0.21 3.1 0.51
transformg and at very high frequencigs/here the general- 0.30  2.62 3.4 0.16 2.8 0.52
ized hydrodynamical description is expected to break Jown 0.35 2.62 4.1 0.42 1.9 0.51
Nonetheless, the simulation results are at least consisterd.4o0 2.62 3.8 0.23 2.6 0.54

with Egs. (14) and (15), suggesting that there is a coexist- g45 019 041
ence of distinct low- and high-frequency motions inthe CSF. j 45 75 14

0.29
The dispersions of the longitudinal and transverse mode

in the CSF atp'=0.45 andT =0.01 are shown in Fig. 8. D45 126 24 11 0.42
These curves were constructed by plotting the peak frequenQ'45 1.79 3.1 18 0.51
cies, o), from each of th&=1 andk=2 contributions to 045 2.62 3.9 0.34 2.8 0.55
C,(q,w) in Egs. (14) and (15); the peak frequencies are 0.45 3.40 3.6 0.44 3.0 0.53
listed in Table Il. The high-frequency and low-frequency 0.45 4.00 2.9 0.52 2.8 0.49
points are assigned to “primary” and “secondary” branches,0.45 4.71 1.6 0.55 2.6 0.41
respectively. The dispersion of longitudinal modes exhibits ap 45 5.50 1.1 0.37 25
primary branch similar in form to that of a simple fluid. The 45 .00 12 0.41 24

limiting slope of this branch ag—0 yields the speed of

031507-6



DYNAMICS IN A TWO-DIMENSIONAL CORE-SOFTENED.. PHYSICAL REVIEW E 71, 031507(2009

0.030 — T T T
0.025 ®) ] ©
p*=0.25 p*=0.35
3 0020 1 .
';3 0.015 = . _
@ \ e FIG. 9. C(2627%w) [@—c)] and
= 0.010 1 C1(2.62071, w) [(d)—f)] for the CSF afl"=0.01,
0.005 b, it A ] and at the densities indicated: MD simulation re-
o N R A_\ sults (solid lines; fits to simulation results using
0.000 - = - ' Eq. (14) for the longitudinal functions and Eq.
0.030 ; y ; y ' (15) for the transverse functiongdot-dashed
0.025 F @ ] lines); and individual contributions from Egs.
3 0020 P*=0~15_ (14) and (15 corresponding Eok=l and k=2
S (dashed lines The results forp"=0.15[(a) and
§ 0.015 . (d)] have been scaled by a factor of 0.5 for
g; 0010 x0.5 ] clarity.
)
0.005 -
0.000 Lot - .
10 10 10

o*

Fig. 8. The peak in the primary branch and the appearance @fre collected in Table Il. The fits t€ (2.6207,») and

the secondary branch occur at a wave veajor=2.62, C;(2.6201,w) for three sample densitieg =0.15, 0.25,
which coincides with the position of the first peakS(g). At and 0.3% are shown in Fig. 9. The variations of
the state point considered, this wave vector corresponds TQ:na)XZ.GZD'_l) in the primary branches are not significant,
the typical size of the cavities in the meshlike structure. Dy-while those in the secondary branches are more prominent.
namical modes corresponding to correlated motions of parEven though the gross structures vary appreciably over the
ticles about “equilibrium” structures occur at low frequenciesdensity range 0.25 p” <0.45, they do share common motifs
(and energigs and hence the low-frequency branch of theof clusters with near-neighbor separaticag.lo, and mean
longitudinal dispersion is identified with such motions asseparations between cluster®.40. Hence, the assignments
“breathing” or other fluctuations in the shape and dimensionsf low-frequency points to vibrations of the cluster network,
of the cavities. The primary branch shows a local minimumand of high-frequency points to single-particle motions, are
atgqo=5.50 which corresponds to the position of the secondyenerally applicable to all densities at which significant clus-
peak inS(qg). At the state point considered, this wave vectortering is apparent.

corresponds to the nearest-neighbor distance between par-

ticles in the same clyste“r_. The h|grl-frquency_ branph is V. CONCLUSIONS
therefore identified with “intracluster” motions involving
neighboring particles bouncing off one another. Using molecular dynamics computer simulations, it has

In a similar vein, the dispersion of transverse modesheen shown how the structural complexity in a model one-
(shear wavessuggests a coexistence of low-frequency col-component core-softened fluid is manifested in the single-
lective motions(observable at wave vectoggr=1.26 and  particle and collective dynamics. All of the calculations re-
high-frequency intracluster motions. The ringlike cavitiesported in this work were for the model fluid at low
shown in Fig. 1e) are likely to support low-energy shearing temperature, and over a considerable range of density. At low
motions, giving rise to the low-frequency branch. On thedensities, the fluid structure is quite simple, and the well-
other hand, the high degree of local ordering within the fluidknown long-time tail in the velocity autocorrelation function
suggests an inherently rigid structure on short time scaless clearly evident. The collective motions are also simple,
giving rise to a high-frequency branch. there being only one characteristic time scale apparent in

Taken together, Figs. 2, 7, and 8 provide evidence for theach current correlation function at a given wave vector.
bands inC,(q, w) corresponding to low-frequency collective At higher densities the fluid structure becomes consider-
motions and high-frequency intracluster motions. The obserably more complex, consisting of a wide variety of clustered
vation thatC,(q, w) can be accurately described by a simplemotifs including (in order of increasing densitydimers,

superposition of two functions—as in Eqd4) and (15—  chains, and polygons. The mean-square displacement is seen
suggests that these motions are, to a first approximation, ume obey the Einstein relation, which suggests that the hydro-
coupled. dynamic backflow effects responsible for long-time tails in

For all densities in the range 0.2%" <0.45 the longitu-  velocity autocorrelation functions are absent. The spectra of
dinal and transverse dispersion curves appear to exhibit simthese latter functions show two distinct bands, which pre-
lar structures to those shown in Fig. 8. Like the structuresumably reflect collective and single-particle motions. This
factor, the form of the dispersion is relatively insensitive tosituation is mirrored in the spectra of the shear-stress auto-
variations in density within this range. As an illustration, the correlation functions. The longitudinal and transverse current
positions of the peaks i6,(2.62071, w) at different densities ~correlation functions clearly show the emergence of two dis-
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tinct time scales accompanying the onset of particle clusteref three-dimensional core-softened fluids will yield further
ing. Therefore, the longitudinal and transverse dispersioinformation on this interesting class of materials.

plots each possess two branches. By correlating the disper-

sion curves with the static structure factor, the high-

frequency branches can be associated with the correlated mo- ACKNOWLEDGMENTS
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