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The dynamical properties of a model one-component core-softened fluid with purely repulsive interactions
are found to be very complex. At low temperature the fluid structure exhibits cluster motifs including dimers,
stripes, and polygons, depending on density. Single-particle diffusion and the velocity, shear-stress, and wave-
vector-dependent current correlation functions have all been calculated using molecular dynamics simulations.
The results highlight the presence of well-resolved single-particle and collective motions, which is remarkable
for what is essentially a “simple” one-component fluid.
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I. INTRODUCTION

The intermolecular potential in a core-softened fluid
sCSFd consists of a hard repulsive core and a “soft” repulsive
shoulder, and sometimes an attractive tail. CSFs have re-
ceived considerable attention as models with which to under-
stand the origins of unusual phenomena—such as negative
thermal expansion and liquid-liquid critical points—in
network-forming systems such as waterf1g, liquid phos-
phorusf2g, and liquid carbonf3g. These materials are char-
acterized by the ability of the constituent particles to form
two sor mored types of “bond” with nearest neighbors; the
CSF mimics this effect through pairs of particles either pen-
etrating, or being repulsed by, the shoulder of the potential.
To date the study of model CSFs has been restricted to static
structural and thermodynamic propertiesf4–14g.

In recent work the structure and phase behavior of an
interesting model two-dimensional CSF were studied using
Monte Carlo sMCd computer simulationsf13g. The model
consists of a monolayer of Lennard-Jones spheres with an
additional long-range repulsive interaction. The pair interac-
tion potential is

usrd = 4eFSs

r
D12

− Ss

r
D6G + e8Ss

r
D3

, s1d

wheree and e8 are energy parameters,s is the sphere “di-
ameter,” andr is the interparticle separation. A physical re-
alization of this model might be a monolayer of ferromag-
netic surface-stabilized colloidal particles on a solid
substrate, with a strong magnetic field aligned perpendicular
to the plane. With the energy parametere8=s8Î6/9de, usrd is
purely repulsive and consists of a short-range repulsive core,
a shoulder of heighte /3 at r .1.35s, and a slowly decaying
repulsive tail; the potential function is plotted in Fig. 1sad.
Results from MC simulations show that at low reduced tem-
peraturesT* ;kBT/e,10−2 skB is Boltzmann’s constantd this
pair potential gives rise to an astonishing range of states
including dimerized, striped, and meshlike fluids, and trian-
gular and Kagomé latticesf13g. Some typical fluid configu-
rations obtained from MC simulations are shown in Fig. 1
ssee Sec. III for discussiond. A similar diversity of structures

has been observed in a two-dimensional model consisting of
hard disks with a repulsive “step” potentialf12g.

The objective of the current work is to survey the dynami-
cal properties of the CSF at a level of detail comparable to
that obtained in simulation studies of simple “atomic” fluids
f15,16g; the plan of attack has been inspired by recent simu-
lation studies of dynamics in complex fluids and glasses,
such as amorphous silicassee, e.g., Ref.f17gd. To this end,
molecular dynamicssMDd simulations have been used to
calculate various dynamical features, including single-
particle diffusion, relaxation of shear-stress correlations, and
longitudinal and transverse current correlations. It is ob-
served that at moderate densities the structures evident in
Fig. 1 give rise to motions with two distinct time scales:
high-frequency motions corresponding to single-particle
movement within clusters and low-frequency motions corre-
sponding to fluctuations in the cluster network. The main
conclusion from this work is that the model two-dimensional
CSF under consideration not only possesses unusually rich
phase behavior, and unusual structural motifs, but also plays
host to complex dynamical phenomena. This is particularly
interesting because the model is ostensibly a “simple” one-
component fluid with purely repulsive interactions.

This paper is organized as follows. In Sec. II the simula-
tion methods are summarized briefly. Simulation results are
presented in Sec. III, which begins with a recap of the key
structural features, and then goes on to report single-particle
and collective dynamical properties in turn. Section IV con-
cludes the paper.

II. MOLECULAR DYNAMICS SIMULATIONS

The dynamical properties of the CSF defined in Eq.s1d
with e8=s8Î6/9de were examined using molecular dynamics
sMDd simulations in the Gaussian isokinetic ensemblef18g.
The system consisted ofN=500 particles in a square simu-
lation cell of areaA=L2, with periodic boundary conditions
applied. The dimensionless parameters in the system include
number densityr* =Ns2/A, temperatureT* =kBT/e, and time
t* = tÎe /ms2. The potential was truncated smoothly between
0.953L /2 and L /2 using the switching function of Ref.
f19g. The equations of motion were integrated over 106 time
steps of lengthdt* =0.005 using the fourth-order Gear
predictor-corrector algorithmf18g. Time correlation func-*Email address: philip.camp@ed.ac.uk
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tions in the time interval 0ø t* ø100 were measured and
averaged over 50 blocks, each consisting of 20,000 time
steps.

III. RESULTS

Results are reported for the CSF at reduced densities in
the range 0.05ør* ø0.45 along a single isotherm with re-
duced temperatureT* =0.01, for which there is only one
manifold of stable solid phases at high densitiesr* *0.5
f13g. Before proceeding with an account of the dynamical
properties of the CSF, the relevant structural characteristics
will be summarized. Figure 1 shows simulation snapshots of
the CSF at densitiesr* =0.15, 0.25, 0.35, and 0.45. The pro-
gression of structures from “normal,” to striped-liquid, and
then to meshlike structures is remarkable. Spatial correlation
functions and cluster distributions are discussed fully in Ref.

13, but the images in Fig. 1 will be sufficient for interpreting
what follows.

To identify the characteristic structural length scales
present in the CSF, consider the static structure factor,

Ssqd = 1 + 2prE
0

`

rhsrdJ0sqrddr, s2d

wherehsrd is the total correlation functionf16g andJ0sqrd is
a Bessel function of the first kind. Results from simulations
at densities in the range 0.15ør* ø0.45 are shown in Fig. 2.
At low density sr* =0.15d Ssqd exhibits peaks atqs.2.6n,
with n=1,2,3, . . ., and issimilar in form to that for a simple
atomic fluid with particle diameter 2ps /2.6.2.4s f16g sthis
distance being roughly equal to the average distance between
nearest neighborsd. Throughout the density range 0.25ør*

ø0.45 Ssqd exhibits peaks atqs.2.6 andqs.5.5. The
features atqs.2.6 still correspond to real-space separations
in the region of 2p /q.2.4s, but these are now identified
with the distances of closest approach between particles be-
longing to different clusters. The peak atqs.5.5 corre-
sponds to nearest-neighbor particles belonging to the same
cluster, with a typical separation of 2p /q.1.1s.

A. Single-particle diffusion

It is well known that in simple low-density two-
dimensional fluids, the velocity autocorrelation function,
Cvstd, possesses a characteristict−1 long-time tailf20g. Cvstd
is defined by

FIG. 1. sad Pair interaction potential,usrd fEq. s1dg with e8
=s8Î6/9de. sbd–sed Snapshots from simulations of the CSF atT*

=0.01 and various densities:sbd r* =0.15, scd r* =0.25, sdd r*

=0.35, andsed r* =0.45. Spheres are shown with diameter 1s.

FIG. 2. Structure factor,Ssqd, in the CSF atT* =0.01 and den-
sities sfrom top to bottomd r* =0.15, 0.25, 0.35, and 0.45. The
curves are displaced by two units along the ordinate for clarity.
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Cvstd =K 1

N
o
j=1

N

v jstd ·v js0dL , s3d

where v jstd is the velocity of particlej at time t. If Cvstd
, t−1 at long times, then the Green-Kubo relation for the
diffusion constant,D~e0

`Cvstd, diverges, implying that this
transport coefficient is ill defined. This also implies that the
mean-square displacement,DR2std, increases faster thant at
long times, violating the Einstein relation limt→`DR2std
=4Dt. DR2std is defined by

DR2std =K 1

N
o
j=1

N

ur jstd − r js0du2L , s4d

wherer jstd is the position vector of particlej at time t. The
long-time tail in Cvstd is attributed to hydrodynamic back-
flow effectsf16g, but it is wrong to assume that the long-time
tail exists inall two-dimensional fluids. Notable exceptions
include high-density soft-sphere fluids, in whichDR2std in-
creases linearly with time over substantial time intervals
f21–23g. Another example is the dipolar soft-sphere fluid at
low concentrations and low temperature, where almost com-
plete particle association appears to prevent hydrodynamic
backflow f24g.

The mean-square displacement,DR2std, in the CSF along
the isothermT* =0.01 and at densitiesr* =0.05, 0.15, 0.25,
0.35, and 0.45 is shown on a log-log plot in Fig. 3. At first
glance, it appears thatDR2std, t at long times, which is char-
acteristic of the diffusive regime. To examine this further, the
time derivative ofDR2std is plotted in Fig. 4. IfDR2std, t at
long times, then dDR2/dt should tend toward a constant. Fig-
ure 4 demonstrates that this is not true for the lowest densi-
ties shown—r* =0.05 andr* =0.15—whereas the results for
r* ù0.25 appear to level off at long times. A close inspection
of dDR2/dt for all of the densities considered indicates that
over the simulation time scale, the diffusion constant is well
defined for densities at and abover* =0.25, which coincides
with the onset of extensive particle clusteringssee Fig. 1d.

This suggests that particle clustering mitigates against hydro-
dynamic effectssat least over the simulation time scaled.

If the diffusion constant exists, then the Einstein relation
implies that

D =
1

4
lim
t→`

dDR2

dt
. s5d

For densitiesr* ù0.25, the diffusion constant has been esti-
mated using Eq.s5d with simulation results in the time inter-
val 60ø t* ø100; the values are shown in Table I. Generally,
the diffusion constant is expected to decrease with increasing
density due to increasing confinement of the particles, al-
though there appears to be a local maximum in the region of
r* =0.37. The chained structures atr* .0.35 likely provide a
strong hindrance to single-particle diffusion, but as the den-
sity is increased these chains must break up to form a net-
work sas illustrated in Fig. 1d. Therefore, it is possible that
the increase in particle confinement with increasing density
is overcompensated by the disintegration of the chains, lead-

FIG. 3. Mean-squared displacement,DR2std, for systems atT*

=0.01 and densitiesr* =0.05 sdot-dashed lined, r* =0.15 slong-
dashed lined, r* =0.25 sdashed lined, r* =0.35 sdotted lined, andr*

=0.45 ssolid lined.

FIG. 4. Time derivative of the mean-squared displacement,
dDR2std /dt, for systems atT* =0.01 and densitiesr* =0.05 sdot-
dashed lined, r* =0.15 slong-dashed lined, r* =0.25 sdashed lined,
r* =0.35 sdotted lined, andr* =0.45 ssolid lined. The results forr*

=0.25, 0.35, and 0.45 appear to level off at long times; estimates of
the corresponding asymptotic values are indicated with faint lines.

TABLE I. Diffusion constantsDd, shear viscosityshd, and high-
frequency shear modulussG`d, in reduced units, for the CSF along
the isothermT* =0.01 and at various densities,r* .

r* DÎm/es2 hÎs2/me G`s2/e

0.25 1.22s5d310−2 0.25 0.14

0.30 1.10s2d310−2 0.26 0.25

0.31 8.4s2d310−3 0.22 0.27

0.33 5.4s2d310−3 0.81 0.32

0.35 4.5s1d310−3 0.85 0.38

0.37 5.9s1d310−3 0.61 0.46

0.39 5.5s2d310−3 0.65 0.50

0.40 4.7s2d310−3 0.88 0.53

0.45 2.42s9d310−3 0.78 0.73
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ing to a local maximum inD. At the highest densities—r*

=0.40 and 0.45—the effects of confinement are dominant.
To further investigate single-particle motions the velocity

autocorrelation functionCvstd in s3d has been calculated. The
spectrum ofCvstd will also be of interest:

Cvsvd =E
−`

`

Cvstdexps− ivtddt. s6d

Cvsvd is only defined ifCvstd is integrable, but the results in
Fig. 4 show that at low densities this is not the case since
Cvstd must have a long-time tail. As a result,Cvstd has been
Fourier transformed after application of a Blackman window
f18g. Of course, at low densities this procedure will introduce
an artificial low-frequency portion inCvsvd, but it is as-
sumed that the gross features of the spectrum will emerge
unscathed. The normalized functionsCvstd /Cvst=0d and
Cvsvd /Cvsv=0d for systems with densities in the range
0.05ør* ø0.45 are presented in Fig. 5. At low densities
sr* ø0.20d Cvstd shows damped oscillatory behavior charac-
teristic of a dense atomic liquid. Although the particle den-
sity in the CSF is low, the effective diameters,2.4sd—and
hence the “packing fraction”—at the low temperature con-
sidered will be large and so the oscillatory behavior is due to
the backscattering processes familiar in dense atomic liquids
f16g. Cvsvd shows a clear peak at a frequency which in-
creases with increasing density, reflecting the growing influ-
ence of backscattering. As the density is raised progressively
abover* =0.20 several new features inCvsvd emerge: a nar-
row band appears at high frequencysv* .1d; a broad band
appears at low frequenciess10−1,v* ,1d; and the “back-
scattering” peak disappears under the emerging low-
frequency band. With reference to Fig. 1, the density range
0.25ør* ø0.45 is clearly identified with the development of
particle clustering and so the high-frequency features likely

arise from rapid single-particle motions within clusters,
while the low-frequency band reflects some sort of coupling
between single-particle motions and collective modes of the
cluster network. These collective cluster motionsswhich are
different from the hydrodynamic backflows responsible for
long-time tails in low-density two-dimensional fluidsd are ex-
amined further in Sec. III C.

B. Shear stress

The decay of shear-stress fluctuations was investigated
using the shear-stress autocorrelation function,

hstd =
A

kBT
kPxystdPxys0dl, s7d

in which Pab is an element of the stress tensor, given by,

P =
1

A
So

j=1

N
p jp j

m
+ o

j=1

N

o
k. j

N

r jkf jkD , s8d

wherep j is the momentum of particlej , r jk is the separation
vector between particlesj andk, andf jk is the force exerted
on particle j by particle k. Simulation results forhstd /hst
=0d are shown in Fig. 6, along with the corresponding nor-
malized Fourier transforms,hsvd /hsv=0d. As for the veloc-
ity autocorrelation functions, a Blackman window was ap-
plied tohstd prior to Fourier transformation. At low densities
sr* ø0.15d, hstd decays almost monotonically, with just a
slight oscillation at long timessalthough this is within the
noised. At higher densitiessr* ù0.20d hstd exhibits a high-
frequency modulation which is most pronounced atr*

=0.25, but then reduces to a dip atr* =0.45. The dominant
features in the spectra are broad low-frequency shoulders,
and high-frequency bands that are present at densitiesr*

*0.20. AtT* =0.01 the onset of particle clustering occurs in

FIG. 5. Simulation results forsad the velocity autocorrelation
functions,Cvstd, and sbd the associated Fourier transforms,Cvsvd,
for the CSF along the isothermT* =0.01. In bothsad and sbd the
curves are for systems with densities in the order, from top to bot-
tom, r* =0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45. For
clarity, the lines are drawn solid and dashed alternately, and are
displaced from one another by one unit along the ordinate.

FIG. 6. Simulation results forsad the shear-stress autocorrelation
functions,hstd, andsbd the associated Fourier transforms,hsvd, for
the CSF along the isothermT* =0.01. In bothsad andsbd the curves
are for systems with densities in the order, from top to bottom,r*

=0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45. For clarity,
the lines are drawn solid and dashed alternately, and are displaced
from one another by one unit along the ordinate.
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the vicinity of r* =0.20–0.25ssee Ref. 13 and Fig. 1d, and so
the peaks in the regionv* =1–2 suggest some sort of local
vibrational motion within clusters leading to the relaxation of
shear-stress fluctuations.

The shear viscosity and high-frequency shear modulus
were obtained from the Green-Kubo formulah=e0

`hstddt
and the relationG`=hs0d, respectively. Simulation results
are presented in Table I. The high-frequency shear modulus
is proportional to the average ofPxy

2 , and this is easy to
calculate precisely in MD simulations. The shear viscosity,
on the other hand, requires a precise calculation ofhstd,
which can possess long-time or “molasses” tails. Therefore,
Table I only reports values ofh and G` at densitiesr*

ù0.25. The shear viscosity jumps considerably betweenr*

=0.31 andr* =0.33, presumably due to the development of
chainlike ordering which persists over a considerable portion
of the simulation cell. Over the density range 0.33ør*

ø0.45,h plateaus out at a roughly constant valuefwithin the
likely statistical errors of,10% based on the noise inhstdg.
In this density range the cluster network percolates through-
out the entire system. The high-frequency shear modulus in-
creases monotonically with increasing density, reflecting the
development of rigiditysover short time scalesd as the cluster
network is established.

C. Current correlation functions

To elucidate the nature of collective motions in the CSF,
longitudinal sLd and transversesTd modes have been exam-
ined through calculation of the corresponding current corre-
lation functions,

Casq,td =K Jasq,tdJas− q,0d
N

L , s9d

where a=L or T. The longitudinal and transverse currents
are given by

JLsq,td =
Jxsq,tdqx + Jysq,tdqy

q
s10d

and

JTsq,td =
− Jxsq,tdqy + Jysq,tdqx

q
, s11d

respectively, where

Jsq,td = o
j=1

N

v jstdexpf− iq · r jstdg s12d

is a Fourier component of the current, andq=sqx,qyd is a
wave vector commensurate with the periodic boundary con-
ditions. Of more immediate use are the correspondingstem-
porald Fourier transforms,

Casq,vd =E
−`

`

Casq,tdexps− ivtddt, s13d

calculated after application of a windowing function to
Casq,td in case there are long-time tailssalthough in prac-
tice, no such features were detectable within the statistical
noised. The CSF at a densityr* =0.45 and at temperature
T* =0.01 will be considered in detail, since at this state point
the system exhibits a high degree of clustering and signifi-
cant complexity in its intermediate-length-scale structure
fsee Fig. 1sedg. The spectral functionsCLsq,vd andCTsq,vd
for this state point are shown in Fig. 7 at wave vectorsqs
=0.19, 3.40, and 6.00. At the lowest wave vectorsqs
=0.19d we find a single peak inCLs0.19s−1,vd at finite fre-
quency arising from an acoustic mode.CTs0.19s−1,vd
shows no finite-frequency maximum, as might be expected
in the long-wavelength, hydrodynamic limitf15g. At an in-
termediate wave vectorsqs=3.40d both CLs3.40s−1,vd and
CTs3.40s−1,vd show two maxima; in the transverse function
these peaks correspond to propagating shear waves. At the
highest wave vector sqs=6.00d CLs6.00s−1,vd and

FIG. 7. CLsq,vd fsad–scdg andCTsq,vd fsdd–
sfdg at the three different wave vectors indicated,
for the CSF atT* =0.01 andr* =0.45: MD simu-
lation resultsssolid linesd; fits to simulation re-
sults using Eq.s14d for the longitudinal functions
and Eq. s15d for the transverse functionssdot-
dashed linesd; and individual contributions from
Eqs. s14d and s15d corresponding tok=1 andk
=2 sdashed linesd. The results atqs=0.19 fsad
andsddg have been scaled by a factor of 0.075 for
clarity.
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CTs6.00s−1,vd show pronounced shoulders on the high-
frequency side of the main broad peak.

It is clear from Fig. 7 that at intermediate wave vectors
there are two well-separated bands, perhaps corresponding to
different types of motion. To analyze the relevant time scales
in more detail, it is showna posteriori that Casq,vd is well
described using a simple superposition of functions—one for
each band—taken from generalized hydrodynamicsssee,
e.g., Chap. 6 of Ref.f15gd. In what follows, the effects of
temperature fluctuations are ignoredsi.e., the thermal con-
ductivity DT=0d, and it is assumed that each channel for the
relaxation of current correlations can be represented by a
single exponential memory function. For the spectrum of the
longitudinal current correlation function, the linear superpo-
sition is of the formfEq. s6.3.36d of Ref. f15g with DT=0g

CLsq,vd = o
k=1

2
akvF8svtkd

fv2 − vk
2 + bkF9svtkdg2 + fbkF8svtkdg2 ,

s14d

where F8szd=z/ s1+z2d and F9szd=−z2/ s1+z2d. For the
transverse correlationsfEq. s6.2.25d of Ref. f15gg,

CTsq,vd = o
k=1

2
ak

Fv2 − Sbk −
1

2
tk

−2DG2

+ Sbk −
1

4
tk

−2Dtk
−2

.

s15d

ak, bk, vk, andtk were treated as separate fitting parameters
for each function and wave vector. It should be noted that the
equations forCLsq,vd and CTsq,vd given in Ref. f15g in-
volve combinations ofq2, kBT, Ssqd, etc., in place of the
empirical parametersak, bk, andvk given above. Factoriza-
tion of these latter parameters is complicated by the question
of how to apportionSsqd, etc. amongst the two contributions
sk=1 and 2d. In any case, the purpose of introducing Eqs.
s14d and s15d is merely to aid fitting the simulation results.
The resulting fits are included in Fig. 7, along with the indi-
vidual contributions corresponding to thek=1 and k=2
terms in Eqs.s14d ands15d. In the vicinities of the peaks the
quality of the fits is excellent; the major deviations occur at
very low frequenciesswhere the simulation results are less
reliable anyway due to small truncation errors in the Fourier
transformsd and at very high frequenciesswhere the general-
ized hydrodynamical description is expected to break downd.
Nonetheless, the simulation results are at least consistent
with Eqs. s14d and s15d, suggesting that there is a coexist-
ence of distinct low- and high-frequency motions in the CSF.

The dispersions of the longitudinal and transverse modes
in the CSF atr* =0.45 andT* =0.01 are shown in Fig. 8.
These curves were constructed by plotting the peak frequen-
cies,vmax

* sqd, from each of thek=1 andk=2 contributions to
Casq,vd in Eqs. s14d and s15d; the peak frequencies are
listed in Table II. The high-frequency and low-frequency
points are assigned to “primary” and “secondary” branches,
respectively. The dispersion of longitudinal modes exhibits a
primary branch similar in form to that of a simple fluid. The
limiting slope of this branch asq→0 yields the speed of

sound, c; from the points at qsø1.79, c
=s1.88±0.02dÎe /m. For iron particles smass density
7.86 kg m−3d of diameter 10 nm at a temperatureT=300 K,
this corresponds toc=s600±10d m s−1. At wave vectorsqs
ù2.62, low-frequency peaks are observed inCLsq,vd, the
positions of which are plotted as the secondary branch in

FIG. 8. Dispersion curves,vmax
* sqd, at r* =0.45 andT* =0.01 for

longitudinal modesscirclesd and transverse modesstrianglesd. The
primary and secondary branches are indicated by filled and open
symbols, respectively. The solid and dashed curves are Akima
splines fitted to the primary and secondary branches, respectively.

TABLE II. Peak positions,vmax
* sqd, in thek=1 andk=2 contri-

butions toCLsq,vd in s14d andCTsq,vd in s15d for the CSF atT*

=0.01 and at various densities. The peaks are grouped into a high-
frequency “primary” branch, and a low-frequency “secondary”
branch.

r* qs

Longitudinal Transverse

Primary
branch

Secondary
branch

Primary
branch

Secondary
branch

0.05 2.62 0.36

0.10 2.62 0.37

0.15 2.62 0.16 0.64

0.20 2.62 0.24 2.9sweakd 0.74

0.25 2.62 3.1 0.21 3.1 0.51

0.30 2.62 3.4 0.16 2.8 0.52

0.35 2.62 4.1 0.42 1.9 0.51

0.40 2.62 3.8 0.23 2.6 0.54

0.45 0.19 0.41

0.45 0.75 1.4 0.29

0.45 1.26 2.4 1.1 0.42

0.45 1.79 3.1 1.8 0.51

0.45 2.62 3.9 0.34 2.8 0.55

0.45 3.40 3.6 0.44 3.0 0.53

0.45 4.00 2.9 0.52 2.8 0.49

0.45 4.71 1.6 0.55 2.6 0.41

0.45 5.50 1.1 0.37 2.5

0.45 6.00 1.2 0.41 2.4
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Fig. 8. The peak in the primary branch and the appearance of
the secondary branch occur at a wave vectorqs.2.62,
which coincides with the position of the first peak inSsqd. At
the state point considered, this wave vector corresponds to
the typical size of the cavities in the meshlike structure. Dy-
namical modes corresponding to correlated motions of par-
ticles about “equilibrium” structures occur at low frequencies
sand energiesd, and hence the low-frequency branch of the
longitudinal dispersion is identified with such motions as
“breathing” or other fluctuations in the shape and dimensions
of the cavities. The primary branch shows a local minimum
at qs.5.50 which corresponds to the position of the second
peak inSsqd. At the state point considered, this wave vector
corresponds to the nearest-neighbor distance between par-
ticles in the same cluster. The high-frequency branch is
therefore identified with “intracluster” motions involving
neighboring particles bouncing off one another.

In a similar vein, the dispersion of transverse modes
sshear wavesd suggests a coexistence of low-frequency col-
lective motionssobservable at wave vectorsqsù1.26d and
high-frequency intracluster motions. The ringlike cavities
shown in Fig. 1sed are likely to support low-energy shearing
motions, giving rise to the low-frequency branch. On the
other hand, the high degree of local ordering within the fluid
suggests an inherently rigid structure on short time scales,
giving rise to a high-frequency branch.

Taken together, Figs. 2, 7, and 8 provide evidence for the
bands inCasq,vd corresponding to low-frequency collective
motions and high-frequency intracluster motions. The obser-
vation thatCasq,vd can be accurately described by a simple
superposition of two functions—as in Eqs.s14d and s15d—
suggests that these motions are, to a first approximation, un-
coupled.

For all densities in the range 0.25ør* ø0.45 the longitu-
dinal and transverse dispersion curves appear to exhibit simi-
lar structures to those shown in Fig. 8. Like the structure
factor, the form of the dispersion is relatively insensitive to
variations in density within this range. As an illustration, the
positions of the peaks inCas2.62s−1,vd at different densities

are collected in Table II. The fits toCLs2.62s−1,vd and
CTs2.62s−1,vd for three sample densitiessr* =0.15, 0.25,
and 0.35d are shown in Fig. 9. The variations of
vmax

* s2.62s−1d in the primary branches are not significant,
while those in the secondary branches are more prominent.
Even though the gross structures vary appreciably over the
density range 0.25ør* ø0.45, they do share common motifs
of clusters with near-neighbor separations.1.1s, and mean
separations between clusters.2.4s. Hence, the assignments
of low-frequency points to vibrations of the cluster network,
and of high-frequency points to single-particle motions, are
generally applicable to all densities at which significant clus-
tering is apparent.

IV. CONCLUSIONS

Using molecular dynamics computer simulations, it has
been shown how the structural complexity in a model one-
component core-softened fluid is manifested in the single-
particle and collective dynamics. All of the calculations re-
ported in this work were for the model fluid at low
temperature, and over a considerable range of density. At low
densities, the fluid structure is quite simple, and the well-
known long-time tail in the velocity autocorrelation function
is clearly evident. The collective motions are also simple,
there being only one characteristic time scale apparent in
each current correlation function at a given wave vector.

At higher densities the fluid structure becomes consider-
ably more complex, consisting of a wide variety of clustered
motifs including sin order of increasing densityd dimers,
chains, and polygons. The mean-square displacement is seen
to obey the Einstein relation, which suggests that the hydro-
dynamic backflow effects responsible for long-time tails in
velocity autocorrelation functions are absent. The spectra of
these latter functions show two distinct bands, which pre-
sumably reflect collective and single-particle motions. This
situation is mirrored in the spectra of the shear-stress auto-
correlation functions. The longitudinal and transverse current
correlation functions clearly show the emergence of two dis-

FIG. 9. CLs2.62s−1,vd fsad–scdg and
CTs2.62s−1,vd fsdd–sfdg for the CSF atT* =0.01,
and at the densities indicated: MD simulation re-
sults ssolid linesd; fits to simulation results using
Eq. s14d for the longitudinal functions and Eq.
s15d for the transverse functionssdot-dashed
linesd; and individual contributions from Eqs.
s14d and s15d corresponding tok=1 and k=2
sdashed linesd. The results forr* =0.15 fsad and
sddg have been scaled by a factor of 0.5 for
clarity.
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tinct time scales accompanying the onset of particle cluster-
ing. Therefore, the longitudinal and transverse dispersion
plots each possess two branches. By correlating the disper-
sion curves with the static structure factor, the high-
frequency branches can be associated with the correlated mo-
tions of nearest neighbors within a given cluster, and the
low-frequency branches with “breathing” or “shearing” mo-
tions of the underlying cluster network.

It is anticipated that similarly detailed simulation studies

of three-dimensional core-softened fluids will yield further
information on this interesting class of materials.
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